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CONJUGATE PROBLEM OF EVAPORATION IN A LONG CHANNEL AT 

SMALL REYNOLDS NUMBERS 

V. I. Nosik UDC 533.6.011 

The flow characteristics associated with evaporation from the walls of a long flat 
channel are investigated and the pressure and evaporation rate distribution along 
the channel are determined with allowance for the redistribution of energy in the 
walls. 

In designing heat exchangers and drying chambers and in constructing models of evapora- 
tion from porous bodies it is necessary to consider problems of internal evaporation. A 
number of features of these problems are manifested in the simple case of evaporation from 
the walls of a long flat channel. 

In the general case, this problem must be examined in the conjugate formulation, with 
allowance for heat transfer in the walls and the evaporation kinetics, as well as the vapor 
flow characteristics [i, 2]. In the case of high thermal conductivity of the solid phase 
and a short slot, for slow flows the fact that evaporation is nonequilibrium in character 
(allowance for difference between vapor pressure and saturation pressure) may have an im- 
portant influence on the distribution of evaporation rate along the channel. At low heat 
fluxes for bodies with a high solid-phase thermal conductivity and low heat of evaporation 
it is also necessary to take into account the energy redistribution in the walls, which leads 
to nonuniform evaporation. The evaporation regimes were analyzed and the possible formula- 
tions of the problem classified in [2]. 

If the thermal conductivity of the solid phase is low, evaporation will be "uniform," 
i.e., the evaporation rate is determined starting from the heat flux supplied. The problem 
of the sublimation of ice was considered within the framework of this approximation in [3] 
for a molecular-viscosity vapor flow regime. A method that makes it possible to calculate 
the pressure distribution along a slot of finite width (with allowance for slip and tempera- 
ture jump) was proposed and an experimental investigation was carried out. In making the 
calculations the pressure at the channel outlet was taken from the experimental results. It 
was shown that the pressure in the slot may be several times greater than the chamber pres- 
sure. 

However, the initial equations of [3] were written for an incompressible fluid, although 
the pressure differences are such that the gas must be considered compressible. Evaporation 
was assumed to be uniform and equilibrium. At the same time, it is useful to analyze the 
case of nonuniform evaporation, when the energy redistribution in the walls is important, 
with allowance for the compressibility of the gas. 

I. We will consider the conjugate problem of equilibrium evaporation from the walls of 
a long flat channel with a convergent nozzle at the outlet (width of slot 2h much less than 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 52, No. 3, pp. 374-381, March, 1987. 
Original article submitted December 23, 1985. 

0022-0841/87/5203-0269512.50 �9 1987 Plenum Publishing Corporation 269 



"j 

..o 

~o 

; - / , /  /, / I / ,  / 
"., 1 l | t - ( s  

Fig. i. Scheme of evaporation from 
channel. 

its length 2L, S = hout/h & i). Heat is supplied to the outer surface, and outside the slot 
a constant pressure Pex is maintained (Fig. i). In the continuum regime the gasdynamic problem 
is quasisteady and is described by the parabolized Navier-Stokes equations for narrow channels 
[4] (terms 0(6), 6 = h/L << i, have been discarded): 

a (pu~lOx + o (pv)lay = o, (i) 

p (uOulOx + vOulOy) = - -  OplOx + OlOy (~OulOy), ( 2 )  

Op/Oy = O, (3 )  

oR . + = j- .y + P k ox + o y j (4) 

w i t h  t h e  c o r r e s p o n d i n g  b o u n d a r y  c o n d i t i o n s  ( t h e  s l i p  v e l o c i t y  and t e m p e r a t u r e  jump a r e  n e g l e c -  
t e d ,  since when Kn << I they give only small corrections): 

y = O  p v = J ,  p = p e ( T ) ,  (5 )  

x = O OplOx = O, u = O, OT/Ox = O, (6 )  

y = h  Ou/Oy=O, v = O ,  OT/Oy=O, (7 )  

x = L G = pure = BS6pe (To)/-[/~--R-To [ (P/Pex)" ( 8 ) 

H e r e ,  Pe = P e ,  exp ( -Q/RT)  i s  t h e  s a t u r a t e d  v a p o r  p r e s s u r e ;  R i s  t h e  gas  c o n s t a n t ;  f ( P / P e x )  
i s  t h e  gasdynamic  f l o w  r a t e  f u n c t i o n  o b t a i n e d  f rom t h e  p r o b l e m  o f  a d i a b a t i c  gas  f l o w  from a 
n o z z l e  [2 ,  5 ] .  

S i n c e  t h e  f l ow  r a t e  i s  d e t e r m i n e d  by t h e  e n e r g y  s u p p l i e d ,  f o r  t h e  p r e s s u r e  and Mach 
number at the outlet from the slot we have the estimates [2]: 

pin N max {Pe~ (q/Q) (6S)-1 I/R-T-}' 

M i n ~  S rain { 1, (q/Q) (6S) -1 ] / ~ / ~ x }  ~< 1. 

From t h e  c o n t i n u i t y  e q u a t i o n  we o b t a i n :  v ,  ~ u , 6  << u ,  ( h e r e  and i n  what  f o l l o w s  c h a r -  
a c t e r i s t i c  v a l u e s  a r e  d e n o t e d  by a s t a r ) .  The momentum e q u a t i o n  g i v e s  an e s t i m a t e  o f  t h e  
p r e s s u r e  d i f f e r e n c e s  a l o n g  t h e  s l o t  ( t h e  d i f f e r e n c e  i s  e s t i m a t e d  f rom t h e  g r a d i e n t  m u l t i p l i e d  
by the characteristic dimension): 

bp/p ~ 0 (M 2) ( 1 -k 0 (1/Re~), ( 9 ) 

where Re = p,u~h2/~L = p,v,h/~ = q~h/Q~ is the Reynolds number for flows in long channels 
(Hele-Shaw type flows [6]), which for evaporation problems is determined by the width of the 
slot, the heat flux supplied, the heat of evaporation and the viscosity of the gas. The pres- 
sure differences may be fairly large when M = 0(i) (i.e., when S = 0(i)) or when M2/Re ~ i. 
At the same time, the pressure difference across the slot hyp/p = 0(6) << I [4]. 

From the energy conservation equation we have the estimate for the transverse tempera- 
ture differences in the gas: 

AyT/T = O (Re AxT/T) --[- 0 (M2). ( 10 ) 

2. L e t  us  c o n s i d e r  t h e  s i m p l i f i c a t i o n s  t o  Eqs .  ( 1 ) - ( 4 )  p o s s i b l e  as  a r e s u l t  o f  t h e  s m a l l -  
n e s s  o f  Re. When Min ~ RV~e, i n  a c c o r d a n c c e  w i t h  e s t i m a t e  ( 9 ) ,  t h e  c h a r a c t e r i s t i c  p r e s s u r e  
d i f f e r e n c e s  Ap/p ~ 1; t h e  c h a r a c t e r i s t i c  p r e s s u r e  p~ ~ P in"  The v e l o c i t y  u i s  p r o p o r t i o n a l  
to (h2/~)(Sp/Sx), as a result of which the convective terms in the momentum equation (2) are 
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Fig. 2. Pressure in slot p (Pa) as a function 
of the longitudinal coordinate x (mm) [a) cal- 
culations based on (13), b) experiment [3], 
h = 4 mm, S = i]: I) J = 1.8"10 -4 kg/m2"sec; 2) 
4"10-4; 3) 7.7-10 -4 . 

of the order of M~n relative to the viscous terms and in the principal approximation they 
may be omitted. Correct to terms O(M~n, Re) the energy equation reduces to ST/By = 0. 

Thus, the pressure, temperature and density of the gas are constant across the slot; 
the gas velocity has a parabolic distribution, as in incompressible Poiseuille flow, and the 
flow rate is equal to 

h 2 p Op 
O = 9u m -- 

3~ RT  Ox 

As d i s t i n c t  f rom t h e  e a s e  o f  P o i s e u i l l e  f l o w ,  t h e  d e n s i t y  and t e m p e r a t u r e  w i l l  v a r y  a l o n g  
t h e  s l o t ,  and t h e  f l o w  r a t e  w i l l  a l s o  be  v a r i a b l e  as  a r e s u l t  o f  i n j e c t i o n .  From t h e  c o n -  
t i n u i t y  e q u a t i o n  and ( 5 ) ,  ( 7 )  we o b t a i n  t h e  e q u a t i o n  f o r  t h e  p r e s s u r e  

h~ o { p o p ' } = _ j ( ~ ) .  ( l l )  
3~ Ox "t RT  Ox } 

The c o r r e s p o n d i n g  b o u n d a r y  c o n d i t i o n s  h a v e  t h e  fo rm:  

Op = o, p Op = BSpS/V-~f-  f P . (12) 
Ox =0 3~ RT Ox x=z 

The pressure distribution is determined by the evaporation rate J(x), which, generally 
speaking, is found from the solution of the conjugate problem. 

When 1 >> Min >> /~e, in accordance with estimate (9), ap/p ~ M~n/Re >> i, which indi- 
cates that the characteristic pressure in the inner region p, is much greater than Pin" In 
order to estimate p, we make use of the continuity equation. Considering that the flow rate 
G varies on a distance of the order of L, we obtain 

RT ~ \ Ox J x=L RT I~ L RT i~ Pdn Re 

whence for Ap, ~ p, 

where M, is the characteristic value of the Mach number in the inner region. The dimension 
of the region of elevated gradients, in which M ~ Min, is of the order of L (Re/M~n << L). 

In this region 8/8x ~ L-I(M~n/Re) >> L-l; however, L-I(M~n/Re) ~ h-1(Kn/Min)M~n ~ h -I 
Kn << h -I for Kn << i. Therefore in the continuum regime Eqs. (1)-(4) and (ii) are valid 
over the entire region of flow, despite the increase in longitudinal gradients, and the dis- 
carded terms are of the order O(M~n) in the end region and O(M~nRe) in the main region of 
flow. 

We will estimate the heat flux in the gas perpendicular to the walls. As follows from 
(4) and (9), the ratio of this flux to the energy expended on evaporation: 

qu/JQ ,'~ RT/Q (A~T/T + M~/Re). 
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TABLE 1 

Curve 
No. A C V "Q Hp ]f AIC 

1 
2 
3 
4 
5 

lO-e 
10-5 
lO-e 
10-6 
10-5 

0,002 
0,02 
0,02 
0,02 
0,02 

0,1 
0,1 
0,1 
0,1 
0,01 

20 
20 
20 
15 
20 

12,5 
1 25 
O, 125 
0,095 
0,125 

0,5 
0,15 
0,05 
0,05 
0,15 

2 Taking into account the estimate AxT/T = (RT/Q)Ap/p, we find that for Min/Re Q << i the heat 
flux can be neglected over the entire region of flow. When Re << M~n this assumption is valid 
with accuracy O(Q -z) in the central region, where = M, ~ Re. 

When Min ~ 1 near the nozzle (for 1 - x/L ~ Re) there will be two-dimensional flow, and 
the convective terms in (2) cannot be neglected; the temperature and density will not be con- 
stant across the slot. In this case the evaporation in the end region may be intense (Mev ~ 
I; (Pe - P)/P ~ i), but as a result of the condition p, >> Pin the evaporation rates J, and 
Jin will be comparable. If the parameters are suitably averaged, calculations in accordance 
with the one-dimensional theory of flows with friction but without injection give an error 
in the pressure determination of 15-25% for M ~ 1 [7]. An error of this order has only a 
slight effect on the solution for 1 - x/L >> Re, where M., ~ Min/Re << 1 and p, >> Pin" Conse- 
quently, it is also possible to use (ii) with boundary conditions (12) for S = i. 

When J = const the solution of (11),.(12) has the form: 

p = p~n] /3  (M~dRe) [1 - -  (x/L)2l + 1. ( 1 3 )  

An estimation of the terms discarded in deriving (ii) shows that, despite the increase in 
2 the gradients when Min >> Re, Eq. (ii) is valid with accuracy O(M~nRe) in the central region 

of the slot and with accuracy O(M~n) in the end region (i - x/L) ~ Re. Comparison with ex- 
periment [3] (Fig. 2) shows that boundary conditions (12) can in fact be used when S = i. 
The fact that the calculated curves lie above the experimental ones in the central region 
can be attributed to the nonuniformity of evaporation and the effect of slip (the treatment 
of slip by the authors of [3] is incorrect as a result of the determination of Kn from Pex, 

whereas Pin >> Pex)" 

3. The nonuniformity of evaporation is caused by the cross flow of energy in the walls 
as a result of the presure gradient along the slot (since p = Pe(T0), the pressure gradient 
causes a gradient of the evaporation surface temperature T O ) [i, 2]. A criterion of this 
redistribution is the condition (s x ~ i. In [2] it was shown that for equilibrium 
(P = Pe) evaporation this condition reduces to Hp ~ i, where Hp is a dimensionless complex: 
Hp = 8-1(Qq,L/XsT,)M~2 min {Re i}. 

We will consider the solution of the conjugate problem for equilibrium evaporation 
(region VI in the classification of [2]) at small Re numbers. 

We write (11)-(12) in dimensionless form (retaining the same notation for the dimension- 
less quantites): 

) h 3 2 = p:ex Q 0 p Op - - I ,  A= - - ,  
A Ox T Ox 31~ RT.L= q. 

OP I = 0 ,  GI~=,=A p OP I = C - ~  [(p), C= Q $8 Pex 

where G has been divided by G, = (q,/Q)6 -z, J by J, = q,/Q, p by the external pressure Pex 
(the dimensionless pressure may be much greater than unity), and T by the saturation temper- 
ature T, at Pex" In the steady case for a uniform heat supply G = I, so that the constant C 
gives the characteristic values of the pressure at the outlet from the slot. The constant A 
depends on the viscosity of the vapor and does not depend on S; the ratio A/C 2 = Re/S 2. 

In dimensionless variables the gradients at x = 1 are as follows: 

i 1 1, 

I ) I -- ) 
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In the case of uniform evaporation (J = const) when q = 1 and C << I (critical discharge 

regime, Mou t = i) the solution of (Ii) takes the form: 

p = V Y / - A  1 / (  1 - -  x ~) + A / C ~ .  

The p r e s s u r e  d e c r e a s e s  m o n o t o n i c a l l y  f r o m  Pmax = p(O) t o  p ( 1 ) .  The r a t i o  ( P m a x / P i n )  = 
( C i / A  + 1 = S /R~e  << 1 f o r  Re/S  2 << 1. A c h a n g e  o f  15-20% in  C h a s  o n l y  a s l i g h t  e f f e c t  on 
the pressure in the central_region. The "characteristic" pressure difference (p(0) - p(1))/ 
p(0) ~ i, so that AT/T ~ I/Q. Thus, in the inner region the characteristic values of the 
pressure and temperature gradients are much less than at x = i. 

The quantity Hp is expressed in terms of the dimensionless parameters as follows: 

Hp : (A/C~)(Q?/~2), ~ = IlL, ? = q,l/~s T .  ~-- A y T / T . ,  

therefore the "nonuniformity" condition Hp ~ i takes the form: 

A Q y / C ~  2 ~ 1. (14)  

T h i s  r e l a t i o n  h o l d s  good in  t h e  end r e g i o n  w i t h  e l e v a t e d  g r a d i e n t s ;  in  t h e  main  r e g i o n ,  where  
M, ~ ( R e ,  t h e  c o n d i t i o n  t a k e s  tlhe fo rm:  

Q/?~ ~ 1, 

which  f o r  s m a l l  Re/S 2 i s  a more  r i g o r o u s  r e q u i r e m e n t  t h a n  ( 1 4 ) .  

The h e a t  c o n d u c t i o n  e q u a t i o n  

~O~T/Ox~-k-O~T/09 ~ = OT/Ot 

w i t h  b o u n d a r y  c o n d i t i o n s  

OT/Oy[u=-~ = - - y q e x ( X ) ,  OT/Ox[~=o = OT/OxI==x = O, 

OT/Ogly=o = - -  A?O/Ox [(p~ (T)/T) Op~ (T)/Ox)], p, = exp [Q (1 - -  1/T)], 

where  t i m e  h a s  been  d i v i d e d  by '~s = p s C s l i / X s ;  x by  L; y by  Z; and  qex  by  t h e  c h a r a c t e r i s t i c  
f l u x  q , ,  was s o l v e d  n u m e r i c a l l y .  An e x p l i c i t  f i n i t e - d i f f e r e n c e  scheme was u s e d ,  and t h e  t em-  
p e r a t u r e  a t  y = 0 was d e t e r m i n e d  f rom t h e  e x p o n e n t i a l l y  n o n l i n e a r  b o u n d a r y  c o n d i t i o n s  by t h e  
sweep method on e a c h  t i m e  s t e p .  A c h e c k  by t h e  n e t  d e n s i f i c a t i o n  method  r e v e a l e d  t h a t  t h e  
scheme is stable and gives an accuracy of 1-2%. 

The results of the calculations for qex = const are presented in Figs. 3 and 4. Figure 
3a shows the function J(x) at various moments of time. Clearly, although Hp > i, so that 
in the steady case the nonuniformity of evaporation must be slight, in the stabilization pro- 
cess considerable nonuniformity of J is observed. This is because the rate of variation of 
the temperature of the evaporating surface is essentially different for different x, as a 
result of which the temperature gradients are greater than in the steady case (cf. Fig. 3b) 
and hence the nonuniformity is also greater. The pressure distribution for these cases is 
shown in Fig. 3b. 

j r~_ 

,/2 ~ 

r 3 ,:s 

2 

/ a /'~ 

o o,~ s: s q~, qe x 

Fig. 3. Flow rate (a) and temperature (b) as functions of the 
longitudinal coordinate during approach to the steady-state 
regime (A = i0 -6, C = 2.10 -3 , u = 0.I, ~ = 0.2, Hp = 12.5, v~/ 
C = 0.5): i) T = 0.2; 2) 0.6; 3) 1.2; 4) i0. Continuous curve, 
To; broken curve, Tex. 
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Fig. 4. Flow rate (a), pressure (b), and temperature (c) as 
functions of the longitudinal coordinate in the steady-state 
regime. Broken curves are for J = const, the dots represent 
Tex. The curves not indicated in Fig. 4a are 3 and 4 respec- 
tively. The various values of the parameters are given in 
Table i. 

In Fig. 4 we have reproduced the results of the calculations in the steady-state regime 
for various values of the leading parameters. Clearly, the nonuniformity of evaporation is 
the greater the smaller__ the value of Hp. The dimension of the zone of strong inhomogeneity 
is of the order of /A/C,. The nonuniformity of evaporation has only a slight effect on the 
temperature distribution (Fig. 4b) and a marked effect on the pressure distribution when 
Hp ~ 0.5, the value of Pmax being less than in the case of uniform evaporation. 

The dependence J(x) is characterized by a minimum in the inner region, and in the case 
of strong nonuniformity even condensation is possible (Fig. 4, curves 3-5). In all cases a 
flow rate maximum is observed at the outlet from the slot. As the thermal conductivity of 
the solid increases (~ decreases), the minimum is displaced toward the center, so that in 
the limit of isothermal evaporation it lies at the center itself. 

The appearance of a minimum on the J(x) curve can be explained as follows. It is clear 
from relations (11)-(12) that for fixed A and J the smaller the pressure the greater the pres- 
sure gradient and hence the temperature gradient. The results of the calculations also show 
(Fig. 4c) an increase in the gradient T0(x) with distance from the center. The greater the 
temperature gradient along the slot the greater the amount of energy transported in the 
longitudinal direction and hence, for a constant supply of energy from the outer surface, 
the smaller the heat flux "spent" on evaporation. As a result, with distance from the cen- 
ter the flow rate decreases. 

However, in the steady-state case all the energy supplied to the solid must go towards 
evaporation; at the same time, at x = i the end surface is adiabatic and does not evaporate. 
The energy flux flowing from the central to the end region goes towards evaporating the mater- 
ial near the end of the slot where J has a maximum. The area under the J(x) curve is equal 
to unity. As a result of the longitudinal heat transfer the transverse temperature gradient 
at first decreases and the T0(x) and Tex(X) curves approach each other (Fig. 4c), but then as 
a result of the increase in energy supply to the outlet region it increases, the Tex(X) curve 
falling less steeply than T0(x). 

The solution depends on the dimensioness complexes A, C, ~, etc. For fixed values of 
the dimensionless parameters the values of Re and Min ~ S may be different, so that for small 
S the results are valid correct to S << I throughout the entire region. 

When S ~ i in an end region of dimension of the order of A/C 2 the solution gives the 
pressure and flow rate only in order of magnitude; consequently, for strong nonuniformity 
(AJ/J >> i) the fall in flow rate in the central region is also given only in order of magni- 
tude; in this case we obtain a qualitative picture of the J(x) and p(x) distributions. 

Thus, the calculations confirm the validity of the estimates made in [2] for steady- 
state evaporation; in the unsteady case the nonuniformity of evaporation has only a slight 
effect on the evaporating-surface temperature distribution, so that this temperature can be 
calculated quite accurately for J = const. However, the nonuniformity of the flow rate must 
be taken into account in designing heat exchangers and in selecting drying regimes. 
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NOTATION 

h, channel width; L, channel length; 6 = h/L, the relative channel width; s thickness 
of the walls; ~ = s relative wall thickness; S, relative area of the outlet cross sec- 
tion; p, gas pressure; Pex, pressure outside the slot; Pin, pressure at the nozzle inlet; 
Pc, saturatio~ pressure; T, temperature; To, evaporation surface tenperature; Q, heat of 
evaporation; Q = Q/RT, dimensionless heat of evaporation; D, gas viscosity; X, gas thermal 
conductivity; Xs, solid-phase thermal conductivity; q, heat flux; M, Mach number; Re, 
Reynolds number; Kn, Knudsen number; J, evaporation rate; and G, mass flow rate per unit 
slot area. 
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COLLAPSE TIME OF VAPOR BUBBLES 

A. D. Okhotsimskii UDC 532.529.5 

A formula is obtained for the collapse time of a vapor bubble with sharp pressure 
increase, taking account of the heat transfer between the bubble and the liquid. 

Consider the action of a sharp change in external pressure from p to P0 + Ap at a 
spherical homogeneous vapor bubble in an infinite liquid medium. If Ap is not too large, 
the process of pressure equalization in the system and establishment of thermodynamic equili- 
brium inside the bubble, including the vapor-liquid interface, occur relatively rapidly [1-3]. 
The heat transfer from the bubble to the liquid determines the condensation rate of the vapor, 
and the time dependence of the bubble radius may be found by solving the system of equations 
[i, 4] 

aT dR R = OF a 0 2(Tr) . 

8t q- dt r2 ar r ar~ ' ( 1 )  

T ( R ,  t):= To + AT; T (~ ,  t )=  T(r ,  0)= To; 

d R _  c~La OT I ;R(o)=Ro. (2) 
dt boy Or Ir=R 

Here T(r, t) is the spherically symmetric temperature field in the liquid (r ~ R). The vapor 
temperature is constant over the time of collapse, and is T o + AT, where AT is the change 
in boiling point of the liquid with increase in pressure by Ap. The collapse time t c is 
determined by the condition R(tc) = 0. 

The well-known - see [i], for example - estimate of t c is obtained on substituting the 
temperature field into Eq. (2) in the form T = T o + AT erfc[(r -- R)/2(at)i/2], i.e., an ac- 
curate solution of the plane thermal problem. This estimate is expressed as follows 

= 4Ja2atc/nR~ = 1. (3) 

Here Ja = CPLAT/hOv is the Jacob number, which is the only defining criterion of thermohydro- 
dynamic similarity in Eqs. (i) and (2) (for water at 100~ Ja ~ I00 Ap/p0 ). 
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